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ABS TR AC T

An approximate comparison has been made of the total equilibrium shock-

layer radiation for three potential Martian entry body shapes at 0-, 45=,

and 90-degreesangles-of-attack. This assessment was performed by

conducting radiation measurements in a shock tube, and shock shape measure-

ments in a shock tunnel. Using these data, radiation results were extrapola-

ted to a trajectory condition for the full-size vehicles using a simplified

analytical model. The efficacy of the extrapolation method was tested by

comparing the zero angle-of-attack extrapolated results of the shock tube
to the radiation measurements obtained in ballistic range experiments (which

simulated the true entry conditions except for size) and to theory. The

agreement was found to be satisfactory for the blunt cone and Apollo shapes,

but, due to a lack of range data and because the theory may not be valid

for the tension'shell, no comparison could be made for that shape.

Local radiation distribution measurements were performed in the shock tube

for a blunt 60-degree half-angle cone, using amodel instrumented with fiber

optics. The effect of pressure on the total equilibrium radiation was deter-

mined over a limited range for the blunt cone at zero angle-of-attack.
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" SUMMARY

Total shock-layer equilibrium radiation has been measured and compared ex-

perimentally for three typical Martian entry body shapes (60-degree half-angle

blunt cone, modified Apollo, and tension shell). The radiation measurements

were performed at zero degrees angle-of-attack for models launched by a light

gas gun in a ballistic range, and at 0-, 45-, and 90-degrees angle-of-attack in

a combustion-driven shock tube. All the tests were performed at one nominal

stagnation temperature (5730 ° K) and a stagnation pressure-diameter product

gaged to ensure that the radiation was primarily in equilibrium and the shock

layer was optically thin. In addition, shock-shape measurements at the three

angles-of-attack were obtained in the shock tube with an image converter and

in a shock tunnel with a conventional schlieren system, using CF 4 as the test

gas. This low specific heat ratio (Y = 1.08) gas yielded the hypersonic condi-

tions (density ratio approximately 15) corresponding to free flight in the Martian

atmosphere, and enabled the accurate simulation of the shock shapes not obtain-

able in the shock tube.

A simple scaling of the radiation data, using the ratio of the radiating volumes,

was used to obtain the comparative heating loads to the three configurations.

This scaling method was tested by comparing the shock-tube and range measure-

ments; agreement was found to be within a factor of 2 for the comparative heating

load for the cone and Apollo shapes. The tension shell data were insufficient to

check the scaling criteria. The purpose of the shock-tube experiments was to
obtain radiation data that could be scaled to a full-size vehicle at a point along a

Martian trajectory. The range data were used as a check on the validity of the

scaling analysis. The results for the relative, full-scale, total radiative heat

load to the vehicle surface during Martian entry are summarized (versus angle

of attack) in the following table:

nlgle

Art ack

0 degrees

45 degrees

90 degrees

WApollo

WCone "

2.9

1.7

3.0

WTension Shell

WCone

16.0

1.8

0.7

Large differences were noted in the shock shapes taken in the shock tube and

the shock tunnel, clue to the low flow Mach number in the shock tube. In order

to assess the angle-of-attack variations, large volumetric scaling factors were

required, and the shock-tunnel data were particularly valuable for doing the

scaling to the flight condition.
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The effect of ambient pressure on the radiation was assessed for the blunt cone

at constant stagnation temperature over a pressure range from 1 to 10 tort in-

itial shock-tube pressure, and showed the expected increase with pressure over

the limited range investigated.

Point measurements of the radiation to the surface of a blunt 60-degree, half-

angle cone were made in the shock tube, using a model instrumented with four

fiber optical bundles. The three-point radiation distribution, thus obtained,

agreed qualitatively with the theoretical result that the radiation at locations on

the body other than the stagnation point may be higher than that at the stagnation

point. The ratios of radiation to the body at a mid-point on the cone (R/ll B =

0. 5) to that at the stagnation point was found, via a scaling analysis based on

the shock-tube data, to be i. 8 compared to simple theoretical estimates of

i. 5 - 4.0, while at the cone edge, an experimentally scaled ratio of 12 compared

to 3-5 from the simple theory.
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- I. INTRODUCTION

It has been shown, 1 that at certain points along an entry trajectory, the radia-

tive heat transfer to a vehicle may dominate the convective heat transfer, and

thus become a significant factor in the determination of the most efficient heat-

shield design. The fact that the total radiation to the entering vehicle from

Martian type atmospheres may exceed the radiation from air at the velocities

required for planetary entry 2 establishes the need for accurate determination

of the radiative energy transfer to the body surface.

The problems associated with the determination of the total radiation to a body

are (1) the distribution of radiative flux over the body, (2) the effect of wave-

length dependent absorption coefficient, (3) the effect of self-absorption, and

(4) nonequilibrium radiation. The earliest investigations of the effect of radia-

tion on a vehicle were limited mainly to stagnation point heating 3' 4 because of

the relative simplicity of the analysis, and because the magnitude of the radia-

tion had been shown to fall off rapidly away from the stagnation point. 5, 6 The

analyses 3-7 that considered the radiation in the stagnation region assumed a

grey gas emissivity, or treated the gas cap as a transparent, infinite radiating

slab, using the actual gas emissivity and assuming the body surface to be black-

body.

An early attempt to predict the variation of heat transfer at points on the body

away from the stagnation point, was made by DeL'Estoile and Rosenthal. 5 They

showed that the radiative heat transfer rate diminished by more than a factor of

2 faster than the convective heat-transfer rate along a meridian line of a hemis-

pherical nose. This result is expected because the radiative transfer goes as

T 4, a much greater temperature dependence than that of convective heat transfer.

Bobbit I performed a simple analysis of the effect of shape (bluntness) for various

bodies at hyperbolic velocities, assuming that the total heating rate to the body

(convective plus radiative) could be expressed as the product of a geometrical

factor and the stagnation point heating rate. He showed that the decrease in the

convective heating rate with greater bluntness was greatly offset by the increase

in radiation. Furthermore, he showed that a measurement of stagnation point

heating rates would fail to indicate the effects of shape changes. Since the most

important region, from the standpoint of efficient heat-shield design, is the

area away from the stagnation point 8 (because of the larger surface area exposed

to the radiation), the accurate determination of the total heating is desirable as

a screening criterion for vehicle _hape selcction.

Several analyses of the radiative transfer to the stagnation point of a vehicle

have been made taking into account the actual wavelength dependence of the radi-

tion. 3,4, 9 These analyses, however, have been limited to that of an optically

thin gas of simple geometry. To date, there has been no accurate method ac-

counting for the effect of self-absorption except in the case of simple geometry

and/or spectrally averaged absorption coefficients. A conservative estimate

-1-
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of the effects of spectral self-absorption in the shock layer of an entry body

has, however, recently been made. 8, 9 The method of Reference 8 can be used

to obtain a conservative estimate of the effect of self-absorption in four impor-

tant band systems NZ+(I-1), CNv, CNred, and CO (4 +) ) if the temperature of

the gas and the number densities of the specie are known.

In considering the effect of radiative heat transfer from the shock layer, one

can distinguish between emission from the gas in a nonequilibrium thermodyna-

mic state immediately after passing through the bow shock, and in the equili-

brium thermodynamic state near the body. The magnitude of the nonequilibriurn

radiation may be several times that of the equilibrium radiation 10, 11, 1Z at

some points on the entry trajectory; however, the portion of the shock layer from

which the radiation is in nonequilibrium may be so small that the total radiation

may be considered to be equilibrium radiation. That is, with regard to Figure

10 of Reference 11, the integral of the radiative intensity, H, over the shock

layer standoff distance can be approximated by the integral of the equilibrium

radiative intensity, Hecl, over that distance. The experiments reported below
are concerned only with simulating radiation that satisfies this criterion.

From these considerations, it is concluded that a reliable, purely analytical

determination of the shock-layer radiation to complex shapes is currently beyond
the state-of-the-art. On the other hand, the selection of Martian probe shapes

recluires knowledge of this radiation. What is required, and was proposed to

the Jet Propulsion Laboratory, is an approximate but realistic experimental

determination of the total equilibrium radiation for various proposed Martian

entry shapes.

The purpose of the reported experiments was to conduct tests on scale models

to compare the total equilibrium radiation heat loads for three J. P. L. -approved

entry body shapes under simulated Martian entry conditions over a range of

angles-of-attack up to and including 90 degrees. Briefly, the technique employed

in the reported tests was to conduct detailed radiation measurements in a shock

tube, and shock-shape measurements in a shock tunnel for the three body shapes

(blunt cone, Apollo, tension shell) at 0, 45, and 90 degrees angle of attack.

The results were then employed in a simple analytical model to extrapolate the

analysis to a full-scale vehicle. The efficacy of the extrapolation method was

tested by comparing scaled results of the shock-tube tunnel data and the results

from ballistic range firings, which simulated the real entry case in all signifi-

cant regards but size.

In addition, local measurements of the radiation to the surface of a blunt 60

degree half-angle cone were made in the shock tube using a model instrumented

with fiber optics, and the effect of pressure on radiative energy transfer was

assessed for the cone at zero degree angle-of-attack.

-Z-
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II. THEORETICAL BACKGROUND

A. RADIATION ENERGY TRANSFER

The complexities inherent in calculating the radiative heat transfer to a body

surface arise from the fact that the transfer equations are field equations.

Consequently, the radiation to a point on the body depends on the conditions in

the entire inhomogeneous radiating volume, and not just on the gas in the im-

mediate vicinity of the point of interest.

Consider Figure 1; following the method of Reference 13, the total energy, q,

transferred per unit time and per unit area of the surface, dA, is

oo 2 _ _ @(q_).<_/2 27;

_¢ IAcos Osin OdOd¢dA, (1)
=0

where the integration has been taken over all frequencies _, and over all poss-

ible directions of incident radiation in a solid angle no greater than 2 _ steradians

(the solid angle may be less than 2 _ steradians at points on the body away from

the stagnation point; e.g., the inflection point on the tension shell).

A further complication to the above equation arises from the factor I_,, the

monochromatic intensity of the radiation flux incident on unit area of the surface

in the solid angle d_, which makes an angle 0 with respect to the normal

surface. I A in itself is the solution to the radiative transfer equation

d Ik
= /_l" [Bl(r) - Ix ] (2)

dr

where _Ais the absorption coefficient allowing for induced emission.

It is quite evident that the solution to the radiation transfer problem for any

actual reentry vehicle would be a huge task. The complexity of this problem

has generally been circumvented by the assumption of simple geometries,

transparent gases, blackbody surfaces, and spectrally averaged absorption co-

B. THERMOCHEMICAL EQUILIBRIUM AND RADIATION CALCULATIONS

A thermochemical equilibrium calculation coupled with the Rankine-Hugonoit

equations 14 was used to calculate the equilibrium conditions in the stagnation

region of the ballistic range models, the shock-tube models, and the actual

entry vehicles. The determination of a spectral distribution for the radiating

-3-
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Figure 1 GEOMETRY FOR RADIATIVE TRANSFER SOLUTION
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(y = 1.08), as the test gas enables us to obtain the hypersonic density ratio

(approximately 15) corresponding to free flight in the Martian atmosphere.

The scaling model used considers that the total radiation heat load to the model

and the full-scale vehicle can be written

Wa _ V a I_a (4)

Wc _ Vc Hc

where V c and Va are the effective radiative volumes of the gas cap, and H c and

H a are volumetrically averaged radiation per unit volume. For a particular

shape, say the Apollo, the ratio Wc/W a is

B

WcA Vc A Hc A
X

WaA Va A Ha A

(s)

The comparative total heat load for two shapes, say the Apollo and blunt cone

is then

X X X

JWc C WaC Vc C Va A \ Ha A Hc C

(6)

The ratios Wa /Wa_and Vac/VaA are determined from shock-tube data, whereas

VcA/Vcc is founad frUom the shock-tunnel shock shapes. The averaged intensity ratios

be'fween the two configurations are assumed the same for flight and test condi-

tions (see Appendix D), hence the scaling is

Wc A WaA Vc A Va C
X ×

Wc C Wa C Vc C Va A
(7)

For scaling absolute intensities to each body shape, rather than comparing the

intensities among the body shapes, Equation (5) must be considered in more

detail. Since the stagnation temperature is matched, the ratio of radiative flux

to the body is (according to Equation 3) proportional to the number density of

the radiating species. Consequently, the radiative flux due to a single optically

thin band system may be scaled by

(8)

-11-



For the total radiation in a given wavelength interval, this would be extended to

Jctota 1 = .

i

Because of the questions raised in Section B with regard to the correct number

densities and spectral distributions, and because the total radiation over rela-

tively large wavelength intervals was measured, an approximation to Equation

(9) was used as the scaling equation. This was

(I0)

With the above considerations in mind, the assumptions underlying the scaling
model are:

1. The gas cap is everywhere in equilibrium.

Z. The gas cap is optically thin.

3. The gas cap is geometrically thin; i.e., it lies close to the body (local

shock-layer thickness << local body radius of curvature).

4. The volumetric averages of intensity have the same ratio for flight and
test conditions for all the models.

5Q The total spectrally integrated equilibrium radiation can be assessed,

using the radiation in the limited spectral region actually monitored

during the tests.

Assumptions 1 and 2 are examined in Appendix B and found to be good. Assump-

tion 3 was checked visually by examination of the image converter photographs

and was found to be valid for all 0 and 45 degrees angle-of-attach cases (see

Figure 18). It is questionable for the shock-tube 90 degree cases because of

the relatively small radius of curvature of the model edge which is now the

stagnation point. Even this limitation is minor, because most of the radiation

at this condition comes from the shock layer on the afterbody.

Assumption 4 is discussed in Appendix D. It was found that assumption 4 is

good to within 35 percent for the shock tube and flight conditions, and to within

20 percent for the shock-tube and range simulation.
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The effect of assumption 5 is probably negligible in assessing the relative merits

of the three body shapes, as the tests are all performed at the same nominal

condition in each facility. Its effect on the scaling of the radiation cannot be

accurately determined, since the relative effect of the neglected radiation

(primarily the CO (4+) band system) varies from 21 percent of the total radiation

at the trajectory conditions, to 63 percent for the range, and 59 percent in the

shock tube (see Figure 2).

We retain these assumptions, however, in spite of the approximate nature of

some, for lack of equally tractable ones, keeping in mind that the entire model

will be checked by comparing the shock-tubes results with those obtained in the

range.

On the basis of this model, the radiation seen per steradian from the front of a

body will be twice that seen from the side, and the radiation to the body is pro-
portional to both.

The coupling of the radiation measurements made in the shock tube with the

shock shapes obtained in the shock tunnel allows a reasonable prediction for the

comparative equilibrium radiation under actual flight conditions (also allowing

for body-size variation). This scaling analysis can be checked by comparison

with the radiation observed in the ballistic range and with simple theoretical
treatments.
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III. EXPERIMENTAL PROGRAM

The conditions in the ballistic range and shock tube were chosen to simulate

one point on the entry trajectory of a Martian type atmosphere consisting of

30-percent CO 2 + 70-percent N 2 by volume:

T = 100°K

p = 5.05 x 10 -7 gm/cc

u = 19, 600 ft/sec

These conditions yield a stagnation temperature of 5730°K and a stagnation

pressure of 0. 17 earth sea-level atmospheres.

The nominal test condition at which all the tests were made in the ballistic

range was

p =

T =

Z. 63 x 10 -4 gm/cc

300°K

u = 15,900 ft/sec

p = 150 tort,

yielding a stagnation temperature of 5730°K and stagnation pressure of 56.4

earth sea-level atmospheres.

Similarly, the nominal test condition run in the shock tube was

p = 8.77 x 10 -6 gm/cc

T = 300°K

u = 3. 655 mm/_sec

p = 5 torr,

yielding a stagnation temperature of 5730=K and a stagnation pressure of 12.Z

earth sea-level atmospheres. As mentioned in the previous section, the stag-

nation temperature is the most important thermochemical variable, and the

experiments were run with the aim of achieving a constant stagnation tempera-

ture for all cases, while the pressure was varied. The pressures were chosen

to ensure that the radiation in the shock tube and ballistic range was primarily

equilibrium (see Appendix B).
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In addition, a series of shock tube tests at fou±- other initial pressures were

run to investigate the effects of pressure on the radiation. The shock tube test

conditions are summarized in Table I, and the models are shown in Figure 13.

TABLE I

SHOCK TUBE TEST MATRIX AND NOMINAL CONDITIONS

Tension Shell
TI

TI

Modified Apollo
IT

rl

60-Degree Blunt Cone
IP

IT

rl

rl

TI

TI

60-Degree Blunt Cone

with Fiber Optics

Angle-of-

Attack

(degrees)

0

45

9O

0

45

9O

0

45

9O

0

0

0

0

0

Initial

Pressure

(torr)

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

1.0

2.5

7.5

i0.0

5.0

Incident Shock

Velocity

(ram/#sec)

3.655

IT

IT

H

v_

11

ir

H

rT

3. 762

3. 722

3. 636

3.618

3. 655

Stagnation

Temperature

(*K)

5730

H

rl

H

Tp

ir

H

H

Jr

H

Tr

It

Ir

tl

Stagnation

Pressure

Atmospheres

12.2
TI

TI

IT

IT

IT

TI

TI

IT

2.8

6.5

17.8

23.2

12.2
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IV. EXPERIMENTAL FACILITIES AND PROCEDURE

The experiments which were used to obtain total equilibrium radiation were

performed in three Avco Space Systems Division facilities:

I. The 100-foot-long ballistics range equipped with a caliber 0.600, two-

stage hydrogen gas gun,

2. The 6-1/2 inch inside diameter (i.d.) combustion-driven shock tube,

and

3. The 20-inch diameter test section shock tunnel (used in the tailored

interface mode), capable of Mach 18 in air.

A. BALLISTICS RANGE

The range and its pertinent instrumentation are shown schematically in Figure

4. The light gas gun was used to accelerate the model and sabot. A rifled

launch tube was used to spin-stabilize the model package at approximately 1600

revolutions per second. The models used were constructed of solid aluminum,

one-quarter-inch in diameter, with cylindrical afterbodies. These models had

the same frontal shapes as those used in the shock-tube and shock-tunnel ex-

periments, except for a shoulder radius of 0.03 inch to avoid ablation. A

photograph of an earlier version of the tension shell model (not used in the

tests) and its sabot are shown in Figure 5.

The entire ballistics range was initially evacuated to below 1 torr, and then

filled with the required 70-percent N 2 + 30-percent CO 2 mixture at the test

condition of 150 tort and room temperature.

After firing, the model left the launch tube and passed into the blast tank,

wherein the hydrogen cooled and decelerated along with any extraneous particles

such as shear disc and piston fragments. The sabot petals separate and impact

baffles in this blast tank.

During the initial tests, a flash X-ray photograph of the model was taken 3 feet

from the muzzle to monitor sabot separation and model orientation and integrity.

When the models were flying properly, this station was no longer used.

A side-looking photomultiplier monitored the arrival of the model at the end of

the blast tank. After an appropriately set delay, a pulse from this photomulti-

plier fired a 1-1/2 inch imploding tube, through which the model left the blast

tank, which closed in 40 _sec, preventing any spurious particles and gun gases

from following the model into the test section.

-16-
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Upon entering the test section, the model was photographed at a set of orthogonal

shadowgraph stations to determine its angle-of-attack. The root mean square

(rms) angle-of-attack for all shots was 1.5 degrees. The model then passed

through the field-of-view of a spectrograph which was used to determine if the

projectile was ablating or if any other contaminant was radiating significantly.

The Avco-made spectrograph had an f-9 optical system and used a diffraction°

grating as the dispersive element to view a spectral range from 3000 to 6500 A.

The recorded spectra were developed and examined to determine the presence

or absence of atomic aluminum lines or aluminum oxide band heads (see Figure

6). This was a criterion for determining whether or not the model was ablating.

Moreover, since the spectrographic plate was exposed to radiation from the test

section for about I minute, both prior to and subsequent to the passage of the

projectile, it provided a very conservative check on the presence of any spurious

radiation. Each plate was calibrated immediately prior to firing with a mercury

source to ensure accurate wavelength determination from the plates.

The gas cap radiation was measured by two wideband radiometers viewing the

projectile head-on. This was accomplished by the use of an aluminized mylar

mirror, as shown in Figure 7. The oscilloscopes began monitoring the radia-

tion when the model was approximately 6 feet upstream of the folding mirror

and ended upon impact of the model with the mirror. A sharp rise in light

level indicated the moment of impact, thus providing a time reference mark

from which the axial position of the model was determined prior to impact.

The model's speed was determined using a 10-Mc counter started by the photo-

multiplier pulse which triggered the imploding tube and photographed the model

at the first shadowgraph station, and stopped by the pulse which triggered the

second shadowgraph unit. The average velocity thus coincided with a station 3

feet upstream of the folding mirror. An estimate of the effect of drag on the

velocity (assuming that the drag force was equal to the stagnation pressure

multiplied by the frontal area, and for a mass of 1.8 grams) showed that the

velocity decreased by 0.3 percent per foot for a nominal velocity of 15, 500 ft/sec.

A second independent velocity measurement was made from the elapsed time be-

tween the detection of the model at the first shadowgraph station and the time of

arrival at the folding mirror.

The output signals from the radiometers were fed into Tektronix oscilloscopes

and recorded photographically. Typical records are shown in Figure 8. The

output signal is logarithmic to ensure that no test data are lost because of the

trace going offscreen. The reduced dat_ should shov; =-t-_

the model has a nearly constant velocity and the radiation incident on the photo

tube varies as i/r 2, where r is the distance from model to photo tube.
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B. SHOCK TUBE

The 6-1/2-inch i.d. combustion-driven shock tube (Figure 9) consists of three

9-foot-long sections, a 2-foot-long test section, and a 2-foot-long vacuum

coupling section joined to a 5-foot-long 1-1/Z-inch i.d. driver by a 30-inch-long
conical transition section. The test section was located between the second and

third driven sections, yielding a nominal flow duration of approximately 120 _sec

at the test condition, with no interference from the reflected shock. A flushing

action was achieved in the setting of the initial pressure by filling from the mani-

fold near the transition section and evacuating the tube through the vacuum

coupling section at the downstream end. This procedure was initiated after the
entire shock tube and manifold system had been evacuated to at least 5 x i0 "4

torr.

Shock speeds were measured using ionization gages at four stations upstream,

one downstream, and one in the test section, 4 inches ahead of the model. The

output of the gages was fed into and displayed on a time-mark folded oscilloscope

sweep (Tektronix 535A), driven by a Radionics (model TWN-2A) triangular wave-

form and timing marker generator. Shock transit times were measured to ± 1

percent, yielding an uncertainty of 7 percent in the total radiation.

Total, over-the-body, radiation was monitored by two appropriately filtered

photomultipliers (similar to those used in the ballistics range study) viewing

the entire test section. A TRW Systems Image Converter Camera, used in the

framing mode, monitored the flow over the model at suitable intervals after the

establishment of a steady flow and was used to obtain shock shapes. The shock

tube and optical layout are shown in Figures 9 and 10. The ionization gage

directly upstream of the model triggered two Tektronix 555 dual-beam oscillo-

scopes into which the output of the photomultipliers was fed. The gate from one

of the scopes was taken and suitably delayed through an S.T,L. Trigger delay

generator, and used to pulse the image converter after a predetermined delay.

Avco-made spectrograph, similar to that used in the ballistics range study,

was used intermittently to determine whether the test slug was being contamin-

ated by shock-tube ablation products and other impurities generated in the com-

bustion driver. A mechanical brushing procedure was used to clean the shock
tube between each series of runs to ensure cleanliness.

Typical output signals from the two radiometers are shown in Figure ii. The

upper trace monitors the image converter camera, with the spikes indicating

the instant at which each of the three frames are taken. The photomultiplier

signal shows the small increase in light level as the shock traverses the test
section, indicating the increase of light intensity as more of the shocked gas

is visible by the detectors. Then, the intensity peaks and decays as the inci-

dent shock passes over and partially reflects from the model, and the bow shock

forms and the flow becomes steady. The level portion is indicative of the steady

state, and as such was used to obtain the equilibrium radiation data.
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86-8730

I - IMAGE CONVERTER

2 - FRONT SURFACE MIRROR

3 - MODEL

4 - HALF-SILVERED MIRROR

( 2 in, x 2 in.)

5 - MATCHED ACHROMATIC LENSES

(d:3in.,f:145mm)

6 - OPTICAL STOPS

7-NEUTRAL DENSITY FILTERS
AND SCREENS

8- PHOTOMULTIPLIERS

Figure 10 SHOCK-TUBE OPTICAL SYSTEM
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10 mv/crn 2 0  ,usec/crn 

s- I 
5mv/cm 2 0  ,usec/cm 

RUN NO. 144 
pl ~4.85 mm Hq Us = 3.61 rnm/,usec 

86-8731 

Figure 11 TYPICAL SHOCK-TUBE DATA 
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The data reduced for each run were scaled to account for the slight variations

from the nominal test condition using the pressure and velocity variation of the
radiation for this mixture as determined by previous studies, c., 11, 1Z

C. SHOCK TUNNEL

Schlieren pictures of the shock wave about the models at high Mach number and

angle-of-attack were obtained in the 20-inchtest section shock tunnel. This tunnel

is capable of Mach 18 in air, but due to the need to simulate the required low

adiabatic exponent, y , corresponding to the equilibrium decomposition of the

model Martian atmosphere, the tests were conducted in pure CF 4.

The tunnel had a maximum possible area ratio of 104, with typical tailored

reservoir conditions of p = iZ,000 psia and T = 1900 K. The pitot pressure

measured during one run was 1.5psia. An equilibrium nozzle program 20 was

run at these reservoir conditions, but yielded answers only until the gas was

expanded to a pitot pressure of 5.0 psia, due to program limitations, corresponding

to a Mach number of 5.80 and a shock density ratio of 14.36. Thus, the flow

being in the hypersonic regime for CF4, with a density ratio comparable to that

for the entry condition (15.5) chosen for the model Martian atmosphere, resulted

in a well-simulated shock shape.

D. DATA ACQUISITION AND REDUCTIONS

The shock-layer gas radiation in both the ballistic range and shock tube was

measured by two wideband radiometers. One radiometer consisted of an S-I

response RCANo. 710Z photomultiplter and a Corning 3-70 glass filter (4800 A -
13,000 A), while the other radiometer has an S-11 response RCANo. 6199

photomultiplier and a Corning 5-57 filter (3400 A- 5600 A). Appropriate

neutral density screens and Kodak neutral density filters were used to reduce

the total light level input to the face of the photomulttplier tube. The transmission

of all filters and of the window was measured on a Cary recording spectrograph,

The final spectral response of the radiometers, including all filters is shown

in Figure 12.

The need for an accurate determination of the true spectral distribution of the

radiation necessitated taking a photograph of the spectrum shown in Figure 6.

The CN (violet) band systemis quite prominent, and no other band system is

observable above the background. This agrees qualitatively with the spectral
distribution determined experimentally by Thomas and Menard 10 for this

mixture at approximately the same temperature in a shock tube. On the basis

of this result, the Ames distribution was used in obtaining absolute intensities

from the experimental measurements, as it resembled the experimental spectra

more than did the Avco distribution, Absolute intensities are required only for

the scaling portion of this investigation, not for the relative comparison of the

radiation in the shock tube. For this latter portion, therefore, the equivalent

blackbody intensity (Equation A4 of Appendix A) was used.
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The calibration and data reduction procedures which make use of these response

functions are described in Appendix A of this report.

Figure 13 shows the three models and their holder used in the shock tube and

shock tunnel experiments.

E. INSTRUMENTED SHOCK TUBE MODEL

Several runs were made at zero angle-of-attack with a blunt-cone model instru-

mented at four radial locations with plastic fiber optical bundles. The Crofon TM

Light Guides {made by duPont ) , of which the fiber bundles were constructed,

consisted of a core of Lucite polymethyl methacrylate sheathed with a transparent

polymer of lower refractive index. Each 10-mil diameter plastic fiber strand,

however, had only a 0.001 in.2 cross-sectional area for light transmittance.

The bundles consisted of Z9 or 30 fiber strands cemented at the ends in a 1/8-inch

diameter 1-1/Z-inch-long brass tubing, and enclosed in a No. 13 Alphlex black

plastic tubing. The brass tubing was brazed into the model so that the fibers were

flush with the body surface: (a) at the stagnation point, (b) half-way aft of the

apex, (c) at the shoulder of the model, and (d) in the base of the cone, half-way

between the shoulder and the axis (see Fi,gure 14). The tubing containing the

fiber strands was taken outside the shock tube through a strut whose cross

section was in the shape of a diamond airfoil. The brass tubing ends were then

glued into appropriate mounting holes in a plate which acted as the support for

the photomultiplier instrument package and as a vacuum seal to the shock tube

{see Figure 9).

A calibration curve =howing the response of a fiber bundle as a function of the

angle of incident radiation is shown in Figure 15. Because of the rapid decrease

in response as a function of the angle of incident radiation, a rectangular

function response with angle was assumed:

response

I =1,=0,

-5 degrees < _ < + 5 degrees
n

I_l > 5 degrees

A spectral transmission curve of Crofon light guides, supplied by duPont, is

shown in Figure 16. This transmission curve, in conjunction with the S-1 spectral

response of the RCA 7102 photomultiplier tube was used to calibrate the fiber

bundles in situ in accordance with the procedure given in Appendix A. Traces

from a run are shown in Figure 17.
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Figure 15  ANGULAR CALIBRATION OF FIBER BUNDLES 
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TOP MONITOR FROM IMAGE CONVERTFH; TOP FIBER NO I ,  200mv /cm 20psec lcm 

BOTTOM: S-1 RADIOMETER, SIDE VIEW Srnvkm. 2 0 p s e c  /cm 

20 psec /cm BOTTOM' S - l l  RADIOMETER, SIDE VIEW 

5 rnv/cm 2 0 p s e c  /cm 

I 

FIBER NO 2 ;  100 mv/crn 2 0 p s e c  /crr 

111 
FIBER NO 3 ;  2 0 0 r n v / c r n  2 O p s e c / c m  

t i t i t  1 %  V O  4 ,  200 m v k m  2 0 p s e c / c m  

86-8738 

Figure 1 7  FIBER OPTICS DATA; RUN NO. 183 
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• V. ERROR ANALYSIS

It is of importance to obtain an estimate of the errors involved in this investi-

gation in order to determine the maximum probable error in the measurements an

and in the final radiation prediction.

A. SHOCK- TUBE TESTS

There are several probable sources of error, both in the measurement and data

reduction, and in the scaling analysis.

The maximum probable error in measurement and data reduction can be esti-

mated by reviewing the experimental setup. The error in calibration of the

optical system is estimated as ± 3 percent, but the scatter in the day-to-day

calibration constants is as high as 25 percent. This is due to experimental

difficulties in aligning the tungsten filament lamp at the precise location corre-

sponding to the stagnation point of the model. The probable error in data

reduction is estimated as ±5 percent. There are, however, other sources of

error in the measurements arising from the tests themselves; that is, the tests

were taken to be at a certain measured pressure and shock velocity in a gas of

given composition. As discussed in Section IV, the ±l-percent scatter of the

shock velocity implies a ± ?-percent scatter in the radiation data. The initial

gas pressure has a ±2-percent possible error estimated from the 0. l-torr scale

divisions at the 5-torr nominal pressure (at the other test pressures, this error

will be directly proportional to the nominaltest pressure). The effect of con-

taminants is estimated as having the same effect as the error in the initial pressure

and is found from the leak rate (10 -3 tort per minute) and the time required to

set up a test (-- 5 minutes) to be 0.1 percent. This is negligible compared to

the other sources of error. The initial gas composition may be in error by

± 1 percent, taken directly from the Matheson Company quotation.

The error in the gas pressure implies a ±2 percent possible error in the

radiation, since the radiation is linearly dependent on the pressure. The effect

of the error in composition is more difficult to assess, since it depends on the

equilibrium composition. A conservative estimate, based on an ideal Z-body

dissociative process, is ±2 percent. This variation affects the radiation exactly

as does the pressure effect.

Assuming that all possible sources of error are small and that they arise in-

dependently; i.e., Y = Y(X 1, X 2,... ,,X n ), leads to the determination of the

total probable error from

-37-
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as being +9.5 percent if the 3-percent error in calibration is used in the above

equation, or as 27-percent scatter if the 25-percent scatter in the calibration

constant is used.

B. RANGE TESTS

The probable error in the ballistic range tests is also found from Equation (11).

All the sources of error present in the shock-tube tests are present in the range

tests, and their estimated magnitudes are the same for all sources except that

due to the initial pump down procedure and leak rate. The range was evacuated

only to 1 torr prior to loading and the leak rate was 1 tort per minute. The

time required to fill the range to the 150 tort initial pressure and fire the gun

was a maximum of 2 minutes. The error due to contaminants is thus 2 percent.

Additional possible sources of error in the range tests enter due to the 0.3-percent

per foot effect of drag on the velocity (7 percent on the radiation over a 3-foot

section), ablation effect (found to be nil from the spectra taken during each test),

and angle-of-attack effect. The rms an_le of attack for all shots was 1.5 degrees;

its effect on the radiation is estimated as 0.2-percent using a cos 6adependence

of the radiation on the angle-of-attack. This is not strictly correct, since this

dependence on angle is an approximation I to the decay of the radiation along a

hemi spherical nose.

Again, assuming that all possible sources of error are small and independent

leads to a value for the total probable error of ±10 percent, with the scatter

still within 27 percent.

C. SCALING ANALYSIS

The above error analysis has considered only the probable errors entering into

the radiation measurements. As far as the accuracy of the radiation scaling

prediction is concerned, additional sources of error enter first through the

subjective choice of the radiating volumes, and secondly through their measure-

ment. The error in measurement of the volumes is estimated as 20 percent

(due to a 10-percent maximum probable error in the measurement of the shock

standoff distance at the stagnation point and a 3-percent error at R/R B = 0.5)

for the shock-tube volumes. The error in the volumes from the shock tunnel

are much less. The error due to the subjective choice made in the choice of

radiating volumes cannot be made without a detailed radiation distribution for

each of the models tested. The effect of the difference il_ radiation distributions

between the shock tube and flight and range conditions was found to be approxi-

mately 25 percent (Reference Appendix D).

Thus, an estimate of the error in the final predictions at the trajectory point is

found to be approximately ±30 percent, while the scatter is ±50 percent.
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VI. RESULTS AND DISCUSSION

A. SHOCK SHAPES

The schlieren photographs of the shock shapes in the shock turnnel and a typical

image converter photograph of the tension shell taken in the shock tube are shown

in Figures 18a through 18j.

An estimate of the radiating volume was obtained from the photographs (measured

with a Jones and Lamson optical comparator FC-30ER) using the Second Proposi-

tion of Pappus for tests at zero angle-of-attack, and by a similar method (by

dividing the shock layer into segments) in the case of angle-of-attack.

The radiating volume corresponding to the ballistic range case was teken as that

obtained in the hypersonic shock tunnel, corrected by the cube of the ratio of the

corresponding base diameters. .A similar procedure was used to obtain the radi-

ating volume on a nominal flight vehicle (base diameter = 18. 5 feet). All the

appropriate radiating volumes are given in Table II.

B. BALLISTIC RANGE RADIATION MEASUREMENTS

The radiation emitted in the forward direction by the models in the ballistic range

is tabulated in Table Ill. Since the data were reduced using a i__ dependence, all
r2

the data for a given run should be constant. Only one Apollo run and one blunt-

cone run satisfy this requirement within a factor of 2. The remaining runs show

1
a much larger scatter, indicating that the radiation did not follow a -- dependence.

r2
1

The reason for this behavior is unknown, since the _- dependence held during

calibration to within 4 percent; hence, a reliable radiation measurement for the

tension shell was not obtained in the ballistic range. Other runs were made;

however, the information necessary for data reduction was incomplete (e. g.,

no model velocity was obtained), or ablation was present.

The two good runs indicate that the Apollo shape generates a higher level of

radiation than does the blunt cone, as seen by the S-1 and S-II radiometers.

C. SHOCK-TUBE I_ ,%'I"%TA"I"T("_'IkTA,'I'"I_A_TT'I_T_'IkA'TkTT.q

The radiation over the entire body was monitored by the side-looking radiometers.

The results are shown in Figure 19 and 20 and tabulated in Table IV. Only in

case of the tension shell does the radiation decrease significantly with angle-of-

attack. This is because only for this body shape does the shock layer change

drastically as we go from 0 to 45 degrees. This is due to the fact that the stand-

off distance in the shock tube is quite high and the flow Mach number is quite low,
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Figure 18j IMAGE CONVERTER PHOTOGRAPH OF TENSION SHELL IN SHOCK 
TUBE; u = 0 DEGREES 
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TABLE II

RADIATIVE VOLUMES

Shock Tube (R B = 1 inch)

a = 0 degrees Z5.9 cm 3

3
a = 45degrees 11.6 cm

a = 90 degrees 3.22 cm 3

a = 0 degrees 45.4 cm 3

Shock Tunnel (R B = 1 inch)

(6. 17 cm 3)

(1. 50 cm 3)

(2. 58 cm3)

(19.8 cm 3)

Ballistic Range (R B =.Z inch)

0. 0493 cm 3

0. 0120 cm 3

0. 0206 cm 3

0. 159 cm 3

Trajectory (R B = 9.25 feet)

8.44 x 106 cm 3

Z. 05 x 106 cm 3

3. 53 x 106 cm 3

27.2 x 106 cm 3

a = 45 degrees 17.6 cm 3

a = 90 degrees 1.90 cm 3

a = 0 degrees 17.8 cm 3

a = 45 degrees 7.29 cm 3

a = 90 degrees 3.09 cm 3

( 3. 34 crn 3)

( 3. 15 cm 3)

(13. 7 cm 3)

( 1.88 cm 3)

(4. 30 cm 3)

0. 0267 cm 3

0. 0253 cm 3

0. 110 cm 3

0.0150 em 3

0. 0344 cm 3

4. 57 x 106 cm 3

4.31 x 106 cm 3

18.8 x 106 cm 3

Z. 57 x 106 cm 3

5.88 x 106 cm 3

Model: Blunt Cone

flight velocity:

15, 842 ft/sec

Model: Apollo

flight velocity:

16, 083 ft/sec

÷
Note:

TABLE III

BALLISTIC RANGE RADIATION DATA ÷

_1 JB

Equiv. Black

Body Intensity

cm (watt/ster)

82 1.87

l 1.03

211 11.7

132 8.66

183 8. 19

5.88

1.95

I. 07

10.2

7.58

7. 17

5.15

U* 11.8 -

(watt]ster)

6.30

3.47

33.1

24. 4

23. 1

16.6

%
Equiv. Black

Body Intensity

(watt/ster)

0.218

less than ++

50.0

O. ZZ8

less than

43.8

,,
(watt/ster)

0.501

less than

96.5

The * indicates the appropriate nominal test conditions indicated

in Table I were used. Subscript B is for 8-11 response, and

subscript R for 8-1 response.

This was the first run, and instrumentation sensitivity was set

too high.
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f

!

I

P

TABLEIV

SHOCK-TUBERADIATIONDATA+

Run

III

112

115

116

117

118

119

120

122

123

124

125

126

127

128

129

130

131

13Z

133

134

136

137

139

140

- 141

142

143

144

145

146

147

148

149

151

152

153

154

155

156

158

159

160

161

162

163

164

166

167

168

169

170

171

172

173

174

176

178

179

180

182

183

184

biodel

Cone = 0 Degrees

I

Cone = 0 Degrees

Cone = 45 Degrees

Cone = 45 Degrees

Cone = 90 Degrees

Cone = 90 Degrees

Apollo = 0 Degrees

J
Apollo = 0 Degrees

Apollo = 45 Degrees

L
Apollo = 45 Degrees

Apollo = 90 Degrees

1
Apollo = 90 Degrees

Cone = 0 Degrees

I

i

i

i

!
i

Cone = 0 Degrees

Tension Shell = 45

Degrees

Tension Shell = 45

Degrees

Tension Shell = 0

Degrees

Tension Shell = 0

degree

Tension Shell =

90 degrees

] ension Shell =

90 Degrees

Instr. Cone =

0 Degrees

Instr. Cone =

0 Degrees

(tort)

1.00

1.00

1.00

4.80

4.80

4.80

4.90

4.90

l.O0

1.00

4.80

4.80

4.80

4.80

4.85

4.85

4.90

4.90

4.80

4.90

4.85

4.90

4.90

4.90

4.80

5.00-

4.90

4.90

4.85

4.85

4.85

4.85

4.80

4.90

2,40

2.60

2.55

2.60

2.50

7.60

7.50

7.70

7.60

9.90

9.95

9.80

9.95

4.80

4.90

4.80

4.90

4.80

4.75

4.75

4.85

4.80

4.80

4.90

4.75

4.80

5.00

5.05

5.00

3.73

3.65

3.67

3.77

3.70

3.67

3.70

3.77

3.76

3,65

3,66

3,73

3.78

3.70

3, 62

3,76

3.90

3.58

3.69

3.65

3.65

3.90

3.84

--- 3.86

3.90

3.68

3.61

3.67

3.67

3.72

3.73

3.69

3.76

3.49

3.46

3.64

3.55

3.65

3.65

3.63

3,55

3,70

3• 62

3j70

3.75

3.65

3.63

3.65

3.63

3.60

3.66

3.52

3.59

3.65

3.62

3,57

3,64

3,60

3,63

3,65

3,69

_JB:

(watt/ster)

,1513

.1513

,0842

78.I

124.

70.6

62.2

108.

11.4

33.2

113.

87.3

333.

257.

121.

41.7

91.1

159.

311.

170.

68.3

587.1

258.

42.5,

558.

79.8

80.7

61.9

160.

242.

134,

72.2

120.

48.1

303.

67.5

443.

2420.

6570.

56300.

53400.

168.

130.

96.4

144.

270,

183,

376,

578,

24,2

19,7

72,4

46,1

65,7

184,

EqD_..

BlackhQdy

Intensity

(watt/ster}

,152

,152

,120

72,I

83,8

59,2

56,0

88.4

II.I

33,2

I12,

83,3

217,

214.

13o,

42.8

61.7

192.

266.

166.

65.6

259.

194,

205.

245,

69,6

89,7

56,6

125.

184.

113.

67.5

244.

111.

375,

117,

416,

2320.

8570,

43900,

50360,

165,

133,

94.9

148.

312,

281.

445,

569,

26.2

17.8

54.0

38.5

65.7

152.

-D----

'9.

(watt/ster)

.578

.578

,4_5

273,

317,

224,

212,

335.

42,1

125•

424.

315.

824.

811.

494.

162.

233.

729,

i010,

630.

248,

981,

735,

780.

931.

263.

339.

214.

474.

699.

431.

255,

925,

420.

1420,

446,

1570,

8780,

32400.

166000.

190000.

626.

505,

359,

562.

1180.

lO60.

1680.

2150,

99,3

67.4

204.

145.

249.

575.

JR

Equiv,

Blackbody

[ Intensity

ov

(watt / ster)

0.0410

•0780

.0450

2.88

2.23

1.42

1,34

2,19

1.04

9,01

8.80

17.6

18.5

27.2

8.13

1Z.6

28.9

22.9

22.9

44.8

40. 3

56.24

11,5

10.4

10,4

15,3

19.1

15.3

5.14

9.99

3,14

9, 9Z

50.8

35.9

50,7

8.46

57, I0

)1,6

;2.5

t5,4

_.7,7

17,7

24, 5

37. 1

12,5

17,1

28.5

3.31

2.06

2.62

2.93

10.1

14.5

(watt/ster)

,0414

,0788

.0642

2.65

I, 50

1.19

1,21

1.79

1.01

8.60

6,71

11.4

15.3

29.2

8,34

8, 57

13,0

22,3

22,0

19.8

19.5

24.7

I0.0

11.5

9.55

14,0

14,9

11,6

4,80

20.2

7.24

17.3

47.7

34.3

50, 0

6.58

53,8

48, 5

34,3

15.8

17.4

18.1

28.4

36.0

19.3

20,3

28,1

3.59

2,57

2,71

3,40

9, 42

II,9

(watt/ster

.0769

.146

.119

4.93

Z.79

2.21

2.25

3.33

1.08

15.9

12.4

28.5

28.5

54, 3

15,5

15,9

24,3

41,6

41.0

36.8

36.3

46.0

18.7

21.4

17.7

26,0

27.7

21.7

8.93

37.6

13.4

32.2

88.6

63,8

92,9

12.24

100.

90, 3

63,9

29,3

32,4

33.7

52,8

66.9

35.8

37,7

52.2

6.67

4.78

5,04

6,32

17,5

22.2

..

2.77 x 105

3. Z2 x 105

2.27 x 105

Z.15 x 105

3.40 x 105

2.34 x 105

1.74 x 105

4.54 x 105

4.47 x 105

16.9x I05

5,54 x 105

8.00 x 105

13.6 x 105

18.8 x 105

11.7 x 105

4.64x 105

7.94x 105

5, 95 x 105

6,31 x 105

7, 53 x 105

2,13x I05

2.75x 105

15.1 x 105

33.55 x 105

49. 5 x 105

30, 5 x 105

6,88 x 105

5, 56 x 105

3,95 x 105

6,18 x 105

39,3 x 105

35. I x 105

55,6 x 105

71,0 x 105

5,89x 105

4,00 x 105

12.1 x 105

8,66 x 105

2.5Z x 105

5,84x 105

>_[>"

(watt / ster )

1.01 x 104

O. 577 x 104

0.457 x 104

O. 465 x 104

0.688 x 104

1.79 x 104

I. 40 x 104

2.39 x l04

3,21 x 104

37.8 x 104

10.8 x 104

11,1 x 104

16,9 x 104

15,8 x 104

15,6 x 104

6,07 x 104

5.98x l04

7,59 x 104

3.08 x 104

3,54x 104

2,92 x 104

37, 5 x 104

40,0 x 104

31,3 x 104

-°

-°

6, 58 x 104

7,26 x 104

7.56 x 104

35,4x 104

44.9x 104

24.0 x 104

25.3 x 104

35.0 x 104

8.07 x 104

5.77 x 104

6,09 x 104

7,64 x 104

4,60 x 104

+ NOTE: The * indicates that the appropriate nominal test

conditions indicated in Table H were used. .
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yields the data shown in Table V. The agreement is quite good (within a factor

of 2). The usefulness of the scaling analysis in predicting the tension shell

case could not be checked due to the deviation of the ballistic range radiation

from the assumed _1 dependence, as discussed previously.
r 2

This same scaling equation (with the appropriate radiating volume and density

changes) yields the prediction for the equilibrium radiation expected at the

trajectory condition, for an entry body with a base diameter of 18.5 feet, shown

in Figures 23 and 24. The predictions are compared (in Table VI) with the re-

sutls calculated in Appendix C. The shock-tube radiation prediction oversti-

mates those calculated in Appendix C by 12 percent for the case of the blunt cone

by a factor of 3. 5 for the Apollo, and by more than an order-of-magnitude for
the tension shell.

The agreement between the simple theory of Appendix C and the shock-tube radi-

ation predictions is quite good for the blunt cone and modified Apollo, but breaks

down for the tension shell. This constitutes an approximate verification of the

simple theory. It is impossible to assess the usefulness of the scaling analysis
for predicting the radiation in the base of the tension shell, however, because it

is believed that the simple theory of Appendix C breaks down when the shock-layer

flow field becomes as complex as in the case of the tension shell.

As mentioned in Section C, and can be seen in !Figures 23 and 24, angle-of-attack

effects become more pronounced after scaling to the trajectory condition than

they appear in the basic shock-tube results. Taking into account the shock-layer

radiation volume corrections definitely causes the radiation to decrease as the

angle-of-attack changes from 0 to 45 degrees, except, perhaps, on the Apollo

where the radiation remains approximately constant. The trend is reversed,

however, at 90 degrees. This is because the radiation is mostly from the shock

layer about the afterbody, which is approximately the same for all three models.

The comparison of the relative heating to the various bodies at the flight condi-

tion was, however, shown (Reference Appendix D) to be good to within 35 percent.
These results are summarized below:

Angle
of

Attack

a = 0 degrees

a = 45 degrees

a = 90 degrees

WApollo

WC one

Scaling

2.91

1.69

2. 97

Theory

1. Z6

WTension Shell

Wcone

Scaling

16.0Z

•I.8Z

0.69

Theory

1.39
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TABLE V

COMPARISON OF PREDICTED TO ACTUAL

BALLISTIC RANGE DATA

(watt/ster)

JB predicted =

(watt / ste r)

273 5.89

317 6.85

224 4.83
Q

0 212 4.58

335 7.22

249 5.37

575 12.4

729 23.7

_ 1010 32.9

_ 630 20.5

m 248 8.09

1180 68.0

1060 61.2

1680 97.0

2150 123

,m
ul

o

JR predicted =

(watt / ste r)

4.93 .106

2.79 .0602

2.21 .0478

2.25 .0486

3.33 .0718

.377

,481

41.6 1.35

41.0 1.33

52.8 3.03

66.9 3.84

35.8 2.O6

37.7 2. 16

52.2

U* _iI.8 / U* \11.8
JB t'-O--_ / /f'B watts/ster -'_"'

3.47 .501

6.30

Q)

o
O

o

o

<

= cm3 1

v b .0494

Va = 25. 9 cm 3

33.1

24.4

23.1

16.6

Pbstag

Pastag

C

O

N

E

= 3, 07 x 10 -3 gm/cm 3 [CN] b

= 6. 62 x I0 x l0 -4 gm/cm 3 [CN] a
A

Vb = . 159 cm 3 P Vb = . 110 ¢m 3

O

45. 4 cm 3 L V a = 17. 8 cm j^Va
L

0

= 6. 16 x 1015 cm -3

= 2. 30 x 1015 cm -3

E S

Nit

S E

I L

O L

N
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The reason for the high relative heating to the tension shell at zero angle-of-

attack can be understood by comparing the shock shapes for the three configura-

tions. It can be seen that the tension shell had shock angles close to normal

near the perimeter of the model where the radiating volume contribution is

largest. In addition, the tension shell exhibits a very strong shock pattern and

large standoff distance (especially in the hypersonic case) near the edge of the

model as compared to the other two configurations.

The theory of Appendix C showed that the radiation is high near the body (for

the blunt cone) because of the high entropy layer. In the case of the tension

shell, however, most of volume has been processed by nearly normal shock

and thus the radiation will not decrease as drastically with distance from the

body. This is especially important near the perimeter of the body.

E. iNSTRUMENTED MODEL

The radiation data obtained using the blunt 60-degree half-angle cone, at zero-

degree angle-of-attack, instrumented with fiber optical bundles are given in

Table VII, and the local shock standoff distances are given in Table VIII. For the

case of radiation to the stagnation point, an integration of Equation (1), assuming

a uniform-infinite slab shock layer of thickness equal to the stangation point
shock standoff distance?' 4, 6, 7 yields

w = _A = 2=8A IAd)%

To use the Ames data of Figure 2b, however, the correct equation is

(13)

W = HBA --

4;r"

(14)

since the Ames data is the spectrally integrated, isotropic radiation per unit

volume of _as radiating into 4_ steradians. This equation yields a value of
4.46 x 10 -0 watts, which compares with the experimentally measured values
of Z. 44 x 10"Z watts shown in Table VII. Thus, agreement is within a factor

of 5.

The shock-tube data show that the radiation away from the stagnation point,

specifically at fiber bundles 2 and 3 (at a point halfway between the apex and the

cone edge and at the cone edge) is greater than the radiation at the stagnation

point. Though this result holds strictly only for the low flow h_ach number

characteristic of shock-tube testing, a scaling analysis similar to that used pre-

viously in this report is used to extrapolate the data to the trajectory condition.

The extrapolated results are then compared with the simple theory of Appendix C.
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TABLE VII

FIBER OPTICS RADIATION DATA*

Run No.

183

184

W 1
(watts)

• 0244

.0204

W 2
(watts)

•288

•239

W 3
(watts)

.0631

.0849

W 4
(watts)

• 0198

•0125

,',-'Allintensities quoted are in the 0. 33-I. ii micron

wavelength region defined by the spectral response

of the Crofon fibers and the S-I response of the

photomultiplier.

TABLE VIII

SHOCK WAVE STANDOFF DISTANCES

Shock Tube

(R B = 1 inch)

81 =' O. 06 inch

82 = O. 18 inch

83 = 0.46 inch

Note:

Hypersonic Case

Shock Tunnel

(R B = 1 inch)

0.028 inch

0.050 inch

0.340 inch

Free flight

(R B = 9.25 feet)

3.11 inches

5.55 inches

37.74 inches

Solid angle viewed by fiber = 2.39 x 10 -2

ste radians
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The scaling is based on the assumption that the ratio of the radiation heating rate

rate between any two points on the body is proportional to the ratio of the local

shock standoff distances and densities. Thus, for both the shock-tube and flight

cases, a relation of the form

qlq- -2= I )P2 (15)

holds. Since constant properties are assumed throughout the shock layer, this
reduces to

q_._2= (16)
ql _1

scaling from the shock tube to flight conditions involves two steps. First, a

scaling of the stagnation point heating rate, and then a scaling of that to points

corresponding to those measured in the shock tube. The relations are:

qlc = qla \81./

(17)

(18)

Using Equation (16) with the average of the measured values, the stagnation

point heating rate for the flight case is found to be

qlc = 7.13 × 10 -2 watts/cm 2

for the Z. 39 x I0 "Z steradians viewed by the fibers. This compares with

qlc = 11.2 x 10 -2 watts/cm 2

calculated using Equation (14) and the Ames data from Figure 2a. Here the

agreement is within a factor of 1.6.

The heating rate at the other two points on the cone surface are found from .

Equation (18) to be

q2c " 0.127 watts/cm 2

and

q3c '= 0.866 watts/era2
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These values are for the solid angle (2.39 x 10 "z steradians) viewed by the

fiber optics, and must be corrected by the ratio 2=/2.39 × 10-2 in order to be

compared with the distribution calculated in Appendix C. The data are com-

pared in Figure 25. It obviously overestimates the ra(',iation at the cone edge.
The reason for this difference probably lies in both the breakdown of the infinite

slab approximation (used both in data scaling and in the theory) and in the fact

that local conditions in the shock layer have strong axial gradients at this loca-

tion , so that the choice of condition from which to compute the radiation is

rather arbitrary. This can be seen directly from Table C- 1 of Appendix C.

The radiative density, H, is quite a strong function of the shock-wave angle,
which decreases quite rapidly near the cone edge.

The same statement can be said here with regard to the question of which

density is used for scaling as was said in Section D. Consequently, the ratio of

the intensitites along the cone with respect to the sta_;nation point are regarded
as being more representative than are their absolute values.

The general trend predicted by the method of Appendix C is confirmed, except

for the decrease in radiation around the blunt hemisphere tip to the junction

with the cone (R/R B = 0. 1). This decrease in radiation is what has been pre-
dicted for a hemispherical nose by the analysis of References 5 and 6. The

recent analysis of Reference 21 for a sphere, however, has shown that while

the relative radiance per unit lenght (watt/cm 3 ster) does decrease with distance

from the stagnation point, the relative radiant intensity (watt/ster) first in-

creases with distance from the stagnation point, goes to a maximum at a point on

on the surface whose normal makes an angle of about 30 degrees with the free
stream, and then finally decreases.
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VII. CONCLUSIONS

In conclusion, the results of the present experimental investigation have

indicated that the radiation measurements performed for various Mars entry

body shapes at angle-of-attack in a shock tube can be used, along with hypersonic

shock-shape measurements of these same bodies in a shock tunnel, to scale and

compare the total over the body equilibrium heating load to similar body shapes

at an actual Mars entry trajectory condition. The method is limited to scaling

over pressure and size, requiring that the stagnation temperature be kept

constant, and with the assumptions that the gas is optically thin and that the

total radiative transfer can be assessed from that occurring in the 0.24- to

1.3 -micron wavelength region.

The accuracy of the scaling analysis has been confirmed for a blunt 60-degree

half-angle cone and a modified Apollo shape at zero angle-of-attack by comparing

the radiation prediction (to within a factor of 2) with that actually measured in a

ballistic range and with a simple theoretical analysis at the trajectory condition.

The prediction for the tension shell shape was not confirmed in either case due

to the lack of ballistic range data for this shape and because the flow field is so

complex that the simple theoretical analysis is undoubtedly poor.

The experimental shock tube results scaled to the trajectory condition are:

a = 0 degree

a = 45 degree

a = 90 degree

W, Apollo

W Cone

2.91

1.69

2.97

WTension Shell

WCone

16.0Z

1.82

i 0.69
I

The simplified scaling analysis was shown to be adequate for discriminating

among various entry body shapes on the basis of total radiative energy transfer

to within a scatter of 50 percent.

Although not requested in this contract, it is felt that the effects of vacuum

ultraviolet radiation for this entry condition (especially that from the CO(4+)

band system) and ol nonequiilbrium radiation on the radiative discrimination

of entry body shapes have not been fully assessed.

In addition, the blunt-cone model instrumented with fiber optical bundles enabled

the direct determination of the radiation at several locations on the surface of

the body. The results confirm that the radiation heating rate is not a maximum

at the stagnation point, but increased with distance along the come to the cone

edge.
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It is felt that the present results indicate the usefulness of the fiber optics instru-

mentation technique for determining the more precise information necessary in

assessing the accuracy of theoretical heating rate distributions along arbitrary

body surfaces for actual atmospheric entry-heat shield design. This is felt to be

extremely important for entry, into the atmosphere of Venus at a higher density

and velocity than that for Mars. In this case, the stagnation temperature will

be high enough so that only continuum and atomic line emission will be important,

while as the flow expands and cools away from the stagnation point, radiation

from the binary systems will increase. Thus, an accurate determination of the

distribution of the radiation heating rate around the body (for individual band

systems as well as for the total integrated radiation intensity) will become

increasingly necessary.
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V c

K = _, volts/watt (A2)
Weff

When the same radiometer system is used to measure the radiation from the

shock layer about the body, the spectral distribution is from an unknown source

rather than from a standard lamp, but the same basic equation still holds.

The data of interest are the total intensities over the entry body shape in the

entire wavelength interval through which the radiometers are sensitive; i.e.,

A1 A 2 cos 0 dX (A3}
W = I (_,) d 2

However, the effective intensity seen by the radiometer is once again given by

and

oo

f A1 A 2Weft* = I_ --d 2 cos 0 t 1 (h) t 2 (/9 t 3 (h) d_ (A4)

0

V

W;ff = _" (A5}

Equation (A4) is the same as Equation (A1), except that I A , the unknown spectral

distribution has been substituted for SA, the lamp spectral intensity, and t3(A) ,

an additional spectral transmissivity of any windows not present during calibra-

tion is included. To reduce the data, we must assume a theoretical spectral

distribution for the unknown spectral distribution. We then obtain the fo!lowing

correction factor,

t_

f A1 A 2(IX)theor. cos 0 d 2

0

/i 2(IX)theor. cos 0

t I (_,) t 2 (_) t 3 (X) d_

A 1 A 2
d_

d 2

(A6)
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The values of f-found using the theoretical spectral distribution given in

Figure 2 are shown in Table A-I. The correct intensity is then found from

w* = V/Kf" (A7)

TABLE A-I

SPECTRAL CORRECTION FACTORS

_B (blue filter, S=ll) f--R(red filter, S-I)

(3400A to 5600._) (4800.A to 13, 000-A)

Shock Tube 0. 264

Ballistic Range 0.3 I0

Shock Tube
(Fiber Bundle)

0. 538

0. 454

3000_k to 12, 000%

0.729
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APPENDIX B

OPTICALLY THIN - EQUILIBRIUM RADIATION CRITERIA

A. EQUILIBRIUM RADIATION CRITERION

The choice of ballistic range test pressure was made on the basis of that required

to ensure that the gas cap radiation was primarily equilibrium radiation. The

method of determining the pressure was as follows:

Oscilloscope traces which monitored the nonequilibrium CN violet radiation

behind incident shock waves 23 (in a shock tube) into two typical Martian

atmospheres (10-percent CO 2 + 90-percent N 2 and 50-percent CO 2 + 50-

percent N2) were used to obtain an estimate of the particle time required to

ensure that the total integrated radiation was no more than six-fifths (6/5)

that of the equilibrium radiation. Then binary scaling was used, with an

estimate of a typical stay time in the shock layer of the projectile (taken

for convenience as RB/5U , where U is the average particle velocity relative

to the body), to obtain the test pressure required to achieve this condition.

The pressures deduced were 220torr for the 10-percent CO 2 + 90-percent

N 2 mixture, and 120 torr for the 50-percent CO 2 + 50-percent N 2 mixture.

Consequently, a choice of 150 torr was made for the 30-percent CO 2 + 70-

percent N 2 mixture of this investigation.

The initial pressure in the shock tube was chosen by requiring that the

stagnation pressure-diameter product was the same as that in the ballistic

range. Further insurance of the achievement of equilibrium radiation in

the shock tube case was due to testing in the gas which has been processed

by the incident shock.

B. OPTICALLY THIN-SHOCK LAYER CRITERION

The possibility of self-absorption in the range tests was checked using the

simplified analysis of Reference 9. The criterion by whichone ascertains whether

self-absorption is present is when the nongrey absorption coefficient, 8" , of

Reference 9, for a band system, multiplied by a characteristic length in the flow

field is of the order-of-unity.

Zince the band system of maximum importance in the wavelength region investi-

gated here is the CN violet, we investigate its self-absorption characteristics.
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From Figure l0 of Reference 9 t, /J* = 2 cm -1 at 15, 000 ft/sec and p= 50 atmos-

pheres. With a shock standoff distance equal to 0.08 cm (obtained from the shock-

tunnel photograph of the Apollo, and then scaled to the range model size), this

yields

81 _* = 0.16 for the range condition.

Similarly for the shock tube, // = 10-2cm -1 at 11, 000 ft/sec and p = 20 atmos-

pheres and the standoff distance of 0. 825 cm, and we have

;_1/_* = 8.25 x 10 .3 for the shock tube condition.

This implies that self-absorption is not present in the range or any of the shock
tube tests.

TWe use this figure, even though it has been calculated for a mixture of 15-percent CO2 + 85-percent N 2 , because

Figure 12 of the same paper shows that for our gas composition (30-percent CO 2 + 70-percent N2), the total radia-
• $ . .

tion intensity for CN (V), CN (R), N 2 (1+), and N 2 (2+) decreased from that used to determine /_ m Figure 10 of
Reference 9.
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APPENDIX C

THEORETICAL RADIATION CALCULATIONS

A theoretical analysis was performed comparing the total equilibrium radiation

heating for the selected flight condition and for 18.5 feet base diameter vehicles.

The shock shapes obtained in the shock-tunnel tests yielded shock angles which

were used to compute the flow conditions and then the radiation intensity at the

outer edge of the shock layer. By use of the shock angles and the pressure

distributions around the body (see Figure C-1)* radiation intensity distributions

around the body were computed. The radiation intensity (assuming a transparent

gas layer) is based on computer program 1885 described in Reference 24.

Figures C-Z through C-4 show the maximum heating rate distribution, qR max
(obtained by multiplying the intensity at the body by the local-shock standoff

distance), the minimum heating rate distribution, qR rain (obtained by taking

the product of the local-shoCk standoff distance and the radiation intensity

at the shock wave), and the linear average heating rate distribution, used for

all comparisons. This average heating rate is too high, especially near the

cone edge, because the high-radiation intensities corresponding to values
close to that at the wall are confined to a relatively thin layer, and most of

the shock layer is at a value close to that corresponding to qR rain " The flow

properties as a function of shock angle are tabulated in Table C-1.

The total radiative heat load to the three shapes as predicted by the calculations

is summarized below:

Ratio of total equilibrium radiation
to that for the cone

Cone 1.00

Apollo 1. Z 5
Tension Shell 1.45

*The pressure distributions for the Apollo and blunt cone (see Reference 25) were obtained from the Avco/SSD blm_t-
body program. The pressure distribution about the tension shell is obtained from Newtonian theory, except in the
shock interaction zone where a pressure recovery greater than that obtained from normal shock stagnation pressure is
possible due to the high efficiency of the multiple shock compression process.

-81-



Q.

o

n,.

laJ

o,.

1.0

.8

.6

.4

.2

0
0 .2 .4 .6 .8 1.0

RADIUS,R/R 8

86- 8754-1

R/RB _ 9

FigureC-la BLUNT-CONE HYPERSONIC SHOCK SHAPE AND PRESSURE
DISTRIBUTION

-82-



.8

.=

_..6

6
F,
hi

==.4
(/)
f./)
hi
rr
n

.2

0
0 .2 .4 .6 .8 1.0

RADIUS, R/R B

86-8754-2

R/R B
i=,

Figure C-lb MODIFIED APOLLO HYPERSONIC SHOCK SHAPE AND
PRESSURE DISTRIBUTION

-83-



1.2

.8

?=
c;

n,.

MJ
r,,.

u)
to
tu .4
rr
Q.

.2

0
0

n

,2 .4 .6

RADIUS,R/R B

.8 I.O

86-9754-3

R/R 8

FigureC-ic TENSION SHELL HYPERSONIC SHOCK SHAPE AND
PRESSURE DISTRIBUTION

-84-



u

¢_1'

_D

n_
-o-

¢0
laJ
I--

e_

Z
m

t_J
"7"

40

3¢

2O

I0

I
QRTo1.A L : 6500 Btu/sec
(BASED ON AVERAGE DISTRIBUTION

MAX

(¢IR) MI N

86-9682

0 .2 .4 .6 .8 1.0

BODY RADIUS RATIO, R/R B

Figure C-2 BLUNT-CONE AND TRAJECTORY CONDITION RADIATION HEATING RATE DISTRIBUTION

-85-



5O

4O

qR}MAX

w
!

oJ

._.

U)
ILl
I-

n,,

Z
C--

ORToTAL : 8200 Btu/$ec

(BASED ON AVERAGE DISTRIBUTION)

I0

0
0

86-8755

.2 .4 .6 .8

BODY RADIUS RATIO, R/R B

Figure C-3 MODIFIED APOLLO TRAJECTORY CONDITION RADIATION HEATING RATE DISTRIBUTION

-86-



80

==
!

o,I

:3

m

=-
I--

(.9

bJ
-r"

86-8756

70

60

50

4O

30

20

IO

(qR)UiN

(qR)MAX

QRToTAL = 9000 Btu/sec

(BASED ON AVERAGE DISTRIBUTION

.2 .4 .6 .8 1.0

BODY RADIUS RATIO, R/R B

Figure C-4 TENSION SHELL TRAJECTORY CONDITION HEATING RATE DISTRIBUTION

-87-



¢)

v

¢)

>-

U

0 0 0 0 __ Q

0

_ _ 0 0 0 _ _ 0 0 _

-88-



APPENDIX D

SHOCK-TUBE SIMULATION OF RADIATIVE INTENSITY

The measurement of radiative flux to scaled models can be conveniently perfor-

med in the shock tube. The simulation of flight conditions is feasible in the case

of equilibrium flow field and radiation. Nonequilibrium radiation is best studied

behind the incident shock, i.e. , without using a model, and will not be consid-

ered further in the present discussion.

Shock-tube test conditions can be chosen to provide the correct stagnation en-

thalpy and to simulate optical thickness at the stagnation point. However, the

test flow Mach number is low (M 2 _- 2 to 3), and the equilibrium test flow behind

the incident shock is both preheated and predissociated. In other words, only a

fraction of the stagnation enthalpy, say a2 < 1 (where a = Uz/Uo¢, and where U2

and U_are test-flow and flight velocities respectively), appears as kinetic energy

of the test flow

u2 = u a (DI)

For equilibrium flow, the state-of-the-gas behind the bow shock of the model is

controlled by stagnation enthalpy and by a at a given shock slope. Indeed, the

dependence on pressure along the shock is essentially negligible. Since a < 1,

the shock-tube flow around the model will be hotter than in flight, except at the

stagnation point, where exact matching can be obtained. Since the radiation in-

tensity varies strongly with temperature, it is useful to estimate the error in-

curred in simulation at given shock slope and specified a. Then, a can be chosen

(by controlling test conditions) to reduce the maximum error within an acceptable

limit.

The calculation is very simple. Consider the data of Figure D-1 which repre-
I

sents normalized intensity, , as a function of shock angle, 8. These data
Ista_

apply to the Martian atmospher_ (30-percent CO 2, 70-percent N2) at a reentry

velocity of 21,000 ft/sec and a free-stream density of 10-6 gm/cc. These values

are chosen as a typical example to demonstrate the method. As noted above,

the radiation intensity at stagnation, Istag (8 = 90 degrees), can be matched

exactly in the shock tube. The curve of Figure D-I is applicable to both flight

--; -_^-,....k_ *^sts when it is interpreted in t_rm_ _f _tatic enthalnv of the

shocked gas. Indeed, the pressure dependence has been essentially absorbed

into the normalization (by Istag ). Using the Hugoniot conditions for large

density ratio, one finds

__ I u2 (D2)
h (a,8) __ 1 - a 2cos 2 8, hstag - --

hstag 2
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These curves are plotted in Figure D-2 for a 2 = 1 (flight), 1/2, 2/3 and 4/5.

The case a 2 = 2/3 corresponds to practical shock-tube test conditions in the

Martian atmosphere. As expected, h increases with decreasing a, i.e., as
Hstag

the test flow becomes hotter for a given stagnation enthalpy.

Figures D-1 and D-Z can be combined to yield the normalized intensity as a func-

tion of a and 0. The results are shown in Figure D-3.

Ist - If
The basis of comparison is , namely the difference between normalized

Ist Istag I
intensity in the shock tube, , and normalized intensity in flight, i*-/i --- .

Istag stag
At 0= 90 degrees, this difference vanishes for all cases because of normalization.

For all O and a= 1, the difference also vanishes (exact simulation). For small

0 and any a, the difference becomes small, because I decays rapidly with shock

angle. Near 8 = 60 degrees, the curves show a maximum. The height of this

maximum is interpreted here as the maximum simulation error. The following

values are obtained from Figure D-3.

2
a 1 4/5 Z/3

Maximum 0

Error

llZ

13 percent 22 percent 35 percent

The maximum error decreases rapidly with increasing a 2 .

This method can be used to estimate simulation error in a convenient manner.

It does not require knowledge of the complete flow field around the model, thus

it can be applied to models at high angle-of-attack. On the other hand, the pre-

sent estimate is conservative, because it is based on maximum error and on

radiation behind the shock. Indeed, this latter decreases more slowly with 8

than the radiation flux to the body, because the radiating gas cap thins out at

increasing 0.

-90-



,4

f

O O

N

N
d 5o;$I o

;I -;$I

o

II I I I I I

6045 ° 6 o

'Id7VHIN3 C]3ZI7VleI_ION

I I[ I I [ I I [

..........-_-

o.
Ill I I J I I ill I I [

6°_sI'A.LISN3 J.NI O3ZI"IVV(_ION
I

I I

0

_m

0

0
d

91/9Z

5

i

i

o_



DISTRIBUTION

Addressee

Jet Propulsion Laboratory (+i reproducible)

4800 Oak Grove Drive

Pasadena, California

Attn: Dr. Stumpf

Research Library - Wilmington (+1 reproducible)

Research Library- Lowell (+1 reproducible)

Reports Distribution Center - Wilmington

No. of Copies

57

93 / 94


